
Complex Analysis with Applications Fall, 2013

Lecture 2 on Sept.09 2013

In this lecture, we studied the geometric representation of the complex numbers. if we are
given α + iβ a complex number, here α and β are real numbers representing the associated
real and imaginary parts respectively, then we can construct a map from C to R2 by

α + iβ 7−→ (α, β).

In fact, we identify complex numbers with points in R2. Under this map, the addition for
complex numbers corresponds to vector addition in R2. Moreover by polar coordinates in
R2, we can rewrite α + iβ as follows:

α + iβ = r(cos θ + i sin θ),

where r is the absolute value of α + iβ, θ is the angle between (α, β) and positive direction
of x-axis in R2. Conventionally we call θ the argument of α+ iβ. Suppose that we are given

z1 = r1(cos θ1 + i sin θ2), z2 = r2(cos θ2 + i sin θ2),

then one can easily show that

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

In other word, the multiplication between two complex numbers corresponds to multiplying
norms and adding arguments.

The polar representation of complex numbers gives us a easy way to calculate n-th roots
of a complex number. Assume that z = r(cos θ + i sin θ) satisfies

zn = a = r0(cos θ0 + i sin θ0).

Then we know that rn(cosnθ + i sinnθ) = r0(cos θ0 + i sin θ0). Hence we deduce that

rn = r0, nθ = θ0 + 2kπ, k ∈ Z.

Solving the above equations gives us

r = r
1/n
0 , θ =

θ0
n

+
2kπ

n
, k ∈ Z.

Varying k within integer numbers can give us n different solutions of zn = a.
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Analytically using complex numbers can also give us a easy way to represent lines and
circles in R2 space. Given a point a = (a1, a2) in R2, then the line passing this point and
pointing to the direction (b1, b2) can be easily written as a+bt. Here a = a1+ia2, b = b1+ib2.
t is a real parameter running from −∞ to ∞. A circle with center (a1, a2) and radius r can
be written as |z − a| = r. Here a = a1 + ia2. | · | stands for the absolute value for complex
numbers.

Now we study the second geometric representation of complex numbers. The so-called
Riemann sphere. Firstly, we embed the complex plane to the plane P , which is located
at x3 = 0 in R3. Therefore z = a + ib can be represented by the point (a, b, 0) on the
plane. Denoting by S2 the unit sphere in R3, then we can find out its north pole, denoted
by N = (0, 0, 1). By (a, b, 0) and (0, 0, 1), we can construct a line in R3. This line must have
one intersection with S2, say (x1, x2, x3). We call (x1, x2, x3) the stereographic projection of
a + ib. Here we have constructed a one-one correspondence between C and S2 \ {N}. One
can easily represent (x1, x2, x3) by the given point a+ ib. In fact we have

Proposition 1. If (x1, x2, x3) is the stereographic projection of a+ ib, then

x1 =
2a

1 + a2 + b2
, x2 =

2b

1 + a2 + b2
, x3 =

a2 + b2 − 1

a2 + b2 + 1
. (0.1)

Conversely, if we have a point (x1, x2, x3) on S2, then it represents a + ib on the complex
plane with

a =
x1

1− x3
, b =

x2
1− x3

. (0.2)

Proposition 2. From (0.1), we see that if |z| =
√
a2 + b2 −→∞, then

|x1|, |x2| ≤
2|z|

1 + |z|2
−→ 0, x3 −→ 1.

The above proposition implies that no matter how a point diverges to ∞ on C, the
associated projection on S2 will always converge to the north pole. Therefore we can identify
∞ on C with N on S2. Therefore we obtain a one-one correspondence between C ∪ {∞}
and S2. In the following, we study two important properties of the stereographic projection.
The first one is

Theorem 1. The stereographic projection maps all circles on S2 to circles or lines on the
complex plane C.

The proof of this theorem can be found from the textbook. On the other hand, we also
have

Theorem 2. all lines and circles on C are mapped to circles on S2 by stereographic projec-
tion.
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Theorems 1 and 2 tell us that there is a one-one correspondence between circles on S2

and circles on C. Here we regard lines on C as circles with radius ∞. In the following, we
consider the proof of Theorem 2. It just involves a little bit vector calculus. Suppose we have
a line a + tb. Since this line contains ∞ on C, N must be lied in the image of a + tb under
the stereographic projection. Pick up t1, t2, t3 three real numbers, then we can find a + t1b,
a + t2b, a + t3b three points on C. They have three images on S2 under the stereographic
projection. They are given by

Pj =

(
2(Rea+ tj Reb)

1 + |a+ tjb|2
,
2(Ima+ tj Imb)

1 + |a+ tjb|2
,
|a+ tjb|2 − 1

1 + |a+ tjb|2

)
, j = 1, 2, 3.

Pj − N give us three vectors on R3. By calculating determinant, one can easily show that
these three vectors are linearly dependent. In other words , they lie on the same plane. Since
tj are arbitrarily chosen, the image of a + tb must be a circle. Circles on C are mapped to
circles on S2. This fact is left as an exercise.

The second property is that the stereographic projection is conformal. Equivalently it
preserves angles. The proof of this fact is not required in this course. But I still write it out
in the following for your reference. The readers may refer to the graphic in another file.

Proof of the conformal property of stereographic projection. Suppose N is the north pole, P
is point on S2. π(P ) is the projection of P under the stereographic projection. Let T be the
tangent line of P which lies in the plane ONP. T intersect with O π(P ) at W . Let γ be a
path on S2. P is contained in γ. The projection of γ is denoted by π(γ). At point W , we
draw a line l which is orthogonal to the plane ONP. γ determines a tangent line at P , say
l1. Clearly T , l1 and l are all orthogonal to the line OP. Therefore l1 must lie in the plane
(P, l). Here (P, l) denotes the plane containing P and l. So we have two choices. Either l1
parallels to l or intersects with l at some point Q. We consider the second case.

Now on the sphere S2, we have two paths across P . One is the big circle C, which is
determined by intersecting S2 with ONP. Another path is the γ. Under the stereographic
projection, the images of these two paths are the line OW and π(γ), respectively. Therefore
the problem is reduced to show that the angle between γ and C equals to the angle between
π(γ) and OW. the angle between γ and C is ∠QPW since by our construction l1 is tangent
to γ while T is tangent to C. To consider the angle between π(γ) and OW, we need find out
the tangent line of π(γ) at π(P ). We claim that Qπ(P ) is the tangent line of π(γ) at π(P ).
Therefore the angle between π(γ) and OW is ∠Qπ(P )W . Now we just need to show that

∠QPW = ∠Qπ(P )W. (0.3)

Noticing that ∠QWP = ∠QWπ(P ) = π/2, QW is the common edge of the two triangles
QWP and QWπ(P ). Moreover one can easily show that the length of PW equals to the
length of Wπ(P ). Therefore the two triangles QWP and QWπ(P ) are identical, which
shows (0.3). The proof is finished.
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